
UNIT FIVE LESSON 3

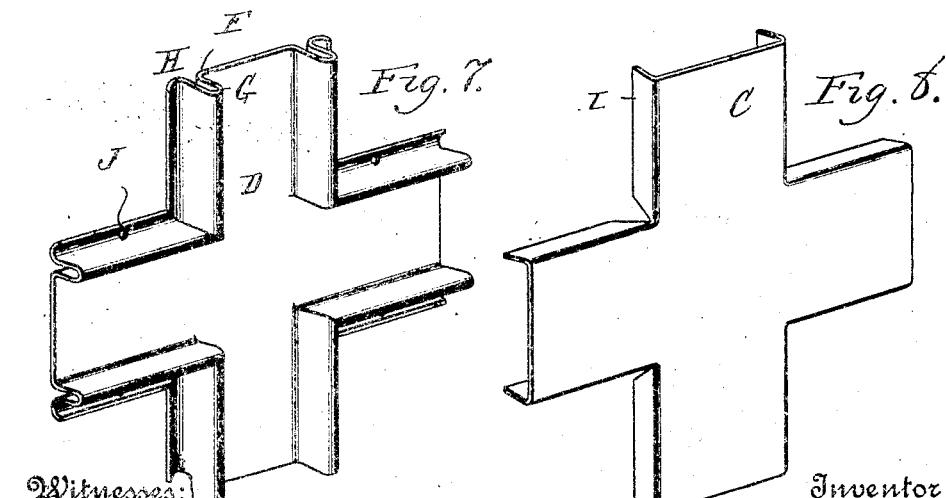
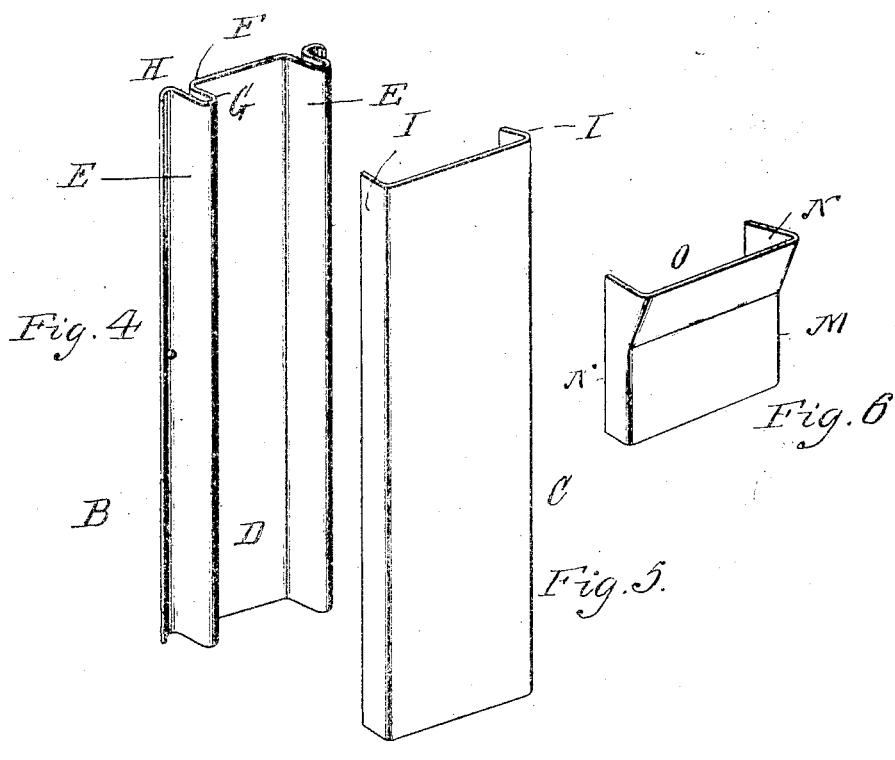
T. E. MURRAY.
PROTECTIVE CASING FOR LINE CONDUCTORS.
APPLICATION FILED MAY 20, 1912.

1,132,671.

Patented Mar. 23, 1915.

2 SHEETS - SHEET 1.

Witnesses:
Festus J. Postee
May J. McBarry.



Inventor
Thomas S. Murray
By his Attorney
Frank Langman

T. E. MURRAY.
PROTECTIVE CASING FOR LINE CONDUCTORS.
APPLICATION FILED MAY 20, 1912.

1,132,671.

Patented Mar. 23, 1915.

2 SHEETS-SHEET 2.

Witnesses:
H. S. S. & Co.
May 1, 1915.

Inventor
Thomas E. Murray
By his Attorney
Paul Benjamin

UNITED STATES PATENT OFFICE.

THOMAS E. MURRAY, OF NEW YORK, N. Y.

PROTECTIVE CASING FOR LINE CONDUCTORS.

1,133,671.

Specification of Letters Patent.

Patented Mar. 23, 1915.

Application filed May 20, 1912. Serial No. 698,398.

To all whom it may concern:

Be it known that I, THOMAS E. MURRAY, a citizen of the United States, residing at New York, in the county of New York and State of New York, have invented a certain new and useful Improvement in Protective Casings for Line Conductors, of which the following is a specification.

The invention is a tubular sheet metal casing for line conductors, and is especially designed to protect house-wiring, when the same is carried along the surfaces of walls, ceilings, etc. The construction is such as to permit easy access to the conductors, at any point, to prevent fire or moisture reaching them, and to present a slight appearance, so that in fact the casing may be used, if desired, as a molding member on ceilings or walls.

20 In the accompanying drawings—Figure 1 is a plan view of my protective casing. Fig. 2 is a sectional view on the line α , α of Fig. 1. Fig. 3 is a side elevation, showing the casing in place on a ceiling. Fig. 4 exhibits the base portion. Fig. 5 exhibits the cover portion. Fig. 6 exhibits the supplementary cover for the joint between the outlet block and casing. Fig. 7 exhibits the base portion of the casing, modified in form 30 to inclose a junction of the line conductors, and Fig. 8 the cover for said modified base portion; the said parts in Fig. 4 to 8, inclusive, being shown separately and in perspective.

35 Similar letters of reference indicate like parts.

The casing A is to be made of resilient thin metal, and, when intended to inclose line wires, in sections of any convenient 40 length. When designed to cover line wire junctions, it is to be made in suitable shape—as exemplified in Figs. 7, 8—which show it arranged to inclose crossing or branch conductors. The casing is made in 45 two parts—a base portion B, and a cover C. The base portion is a flat strip D of resilient sheet metal integrally formed with longitudinal side flanges E produced (Fig. 4) by bending the strip outwardly at F, then 50 back on itself at G to the plane of the flat part D, and then outwardly again at H to form a shallow gutter. The bend at G is to be somewhat open, so that the flange here forms a leaf spring, the resiliency of which 55 opposes the pressing together of the parallel

portions of the flange. The width of the strip between the flanges is to be sufficient to accommodate the line wires to be inclosed. The cover C is integrally formed of a similar strip of resilient sheet metal, and has 60 longitudinal side flanges I produced by bending said strip. The width of the cover is to be such that when it is placed upon the base portion B, the side flanges I will lap over and press inwardly the bent over portions of the flanges E, so that the spring action of said flange E will hold said cover firmly in place. The flanges I may be inclined toward one another so as to secure closer engagement with said flanges E. 70 When the cover C is in place on the base portion B, its under side rests on the outer bends G of flanges E, and its flanges I extend nearly to the bottom of the gutters H. In said gutters are openings for the screws 75 J, by which the device is attached to the wall, ceiling or other support.

In joining the casing to an outlet block, as K, of any suitable construction, the end of the base portion B is brought into contact 80 with said block, and the cover is cut away to permit of the line wires L being led into the usual block openings. In order to cover this opening in the cover, as well as said block openings, I provide a short supplementary cover M, Fig. 6, having side flanges N, similar to the flanges I on cover C, and having one end of enlarged cross sectional area, as shown at O. This cover is made wide enough to be received upon the end 90 portion of cover C in proximity to block K.

In using the device, the sections of the base portion B are secured in proper position on the wall, ceiling or other support, by the screws J, and the outlet blocks or other 95 fixtures to which the wires are to be led are also fixed in place. The line wires are then laid in said base portions and attached to the fixtures. The covers C are then applied, and where needed the supplementary 100 covers M are adjusted in position. If desired, auxiliary covers M may be made without the enlargement at the end, and used to cover the joints between the sections of the casing, as shown at P, Figs. 1 and 2. The line wires 105 are thus inclosed in a moisture-proof protective metal casing, and yet are easily accessible at any point or along their entire length, by removing the proper cover section, or such sections as may be necessary. 110

As the covers are secured without any extraneous fastenings, their removal and application is easily accomplished. When the device is attached to a ceiling or side walls, the out-turned edges of the gutters H and the flanges form barriers or dams to the entrance of moisture from ceiling or walls to the interior of the casing. When the device is placed on a level or inclined surface, any water falling upon it flows to the gutters H, and is so trapped.

I claim:

1. A tubular protective casing for line conductors, having substantially parallel side walls, and on the exterior of said walls parallel longitudinal open gutters.
2. A tubular protective casing for line conductors, comprising a base section having three parallel longitudinal channels, and a cover for the middle channel only.
3. A tubular protective casing for line conductors, comprising a base portion and a cover, each integrally formed of sheet metal, the said base portion having three parallel longitudinal channels, and the cover having flanges receiving and engaging the partitions between said flanges.
4. A tubular protective casing for line conductors, comprising a base section having three parallel longitudinal channels, the middle channel being of greater cross sectional area than either outer channel and re-

ceiving said conductors, and a cover for said middle channel only.

5. A tubular protective casing for line conductors, comprising a base section of sheet metal integrally forming three parallel longitudinal channels, the middle channel being of greater cross sectional area than either outer channel and receiving said conductors, and a cover having resilient longitudinal flanges receiving and engaging the partitions between said channels.

6. A tubular protective casing for line conductors, comprising an outlet block having an opening for the passage of said conductors, a trough-shaped base section receiving said conductors and abutting against said block, a trough-shaped cover having spring flanges receiving between them and engaging the side walls of said base section, and an auxiliary trough-shaped cover having spring flanges receiving between them and engaging the flanges of said first-named cover, one end of said auxiliary cover being of enlarged cross sectional area and abutting against said outlet block.

In testimony whereof I have affixed my signature in presence of two witnesses.

THOMAS E. MURRAY.

Witnesses:

GERTRUDE T. PORTER,
MAY T. McGARRY.