







T. E. MURRAY,
TUBULAR MOLDING CORE FOR PIPES,
APPLICATION FILED JULY 7, 1921.

1,406,577.

Patented Feb. 14, 1922.

UNITED STATES PATENT OFFICE.

THOMAS E. MURRAY, OF BROOKLYN, NEW YORK.

TUBULAR MOLDING CORE FOR PIPES.

1,406,577.

Specification of Letters Patent. Patented Feb. 14, 1922.

Application filed July 7, 1921. Serial No. 482,913.

To all whom it may concern:

Be it known that I, THOMAS E. MURRAY, a citizen of the United States, residing at Brooklyn, in the county of Kings and State of New York, have invented a certain new and useful Improvement in Tubular Molding Cores for Pipes, of which the following is a specification.

The invention is a tubular molding core 10 for pipes of plastic cement or the like, formed wholly of bibulous paper or like bibulous flexible material.

In the accompanying drawing—

Fig. 1 shows my core formed from a spiral strip of paper upon a suitable mandrel. Fig. 2 is a longitudinal and Fig. 3 is a cross section (on the line 3, 3 of Fig. 2) of said core with the pipe molded thereon. Fig. 4 illustrates the mode of removing the core after the cement has sufficiently set. Fig. 5 is a longitudinal section of the finished pipe. Fig. 6 is a sectional view similar to Fig. 2, the core here being made of a plurality of spirals wound one upon the other and in opposite directions. Fig. 7 is a sectional view, also similar to Fig. 2, in which the core is made of two spirals, the outer one being of bibulous and the inner one of non-bibulous paper.

Similar letters of reference indicate like parts.

The core upon which the pipe is molded is to be preferably of bibulous paper having overlapping edges united by a paste soluble in water. I preferably form said core A in spiral form by winding the same upon any suitable mandrel, as B, with its turns overlapping, as shown at C, and united by the paste, so that when removed from the mandrel it is a stiff tube. Upon this tube the cement D or other plastic material which is to form the pipe is directly molded, as shown in Fig. 2. When the core is thus enclosed in the plastic cement, it absorbs water 45 therefrom which softens the fastening paste, so that the core may be unwound, as illustrated in Fig. 4, by the hand of the operator grasping one end of the spiral strip which may then easily be withdrawn from the 50 molded pipe. This withdrawal may be done after all the applied cement has hardened; but I find that with suitably absorptive paper it may be accomplished usually after the cement mass has set for a sufficient distance—for example, as indicated at E, Fig. 55 3—inwardly from its inner surface to en-

able said set portion to support the still more or less plastic outer portion F, and so prevent deformation of the mass after the core has been removed. In either case, the 60 core not only serves as a support whereon the cement is molded, but also by its absorption of the moisture first from the adjacent inner surface of the cement determines the initial hardening of that part of 65 the molded mass.

Instead of making the core of a single strip of paper, I may make it in layers H, I, J of superposed spirally wound strips, which may have their turns in alternately 70 opposite directions, as shown in Fig. 6, in which case, after the softening of the paste, said strips may be unwound and removed separately. Instead of making the whole core of moisture-absorbing material, I may 75 make it of a plurality of spirals, of which the outermost spiral or sheath G, Fig. 7, is of bibulous paper and the inner spiral K or spirals of non-bibulous paper, the latter then serving to strengthen and support the 80 structure. In this case, the sheath G will be removed after the paste has become soft- 85 ened, in the manner already described, after which the inner ones can easily be with- drawn from the pipe.

Attention is called to the fact that this core is made of nothing but flexible bibulous material—preferably, as I have said, paper—in tubular form, and is, therefore, free from any internal supports of wood or 90 metal and is not held distended by air pressure or any other extraneous means. It is, therefore, very cheaply produced. The mode of its removal described—by manu- 95 ally unwinding after the paste is softened— ensures that its complete removal from the pipe without the aid of any special appli- 100 ances for that purpose, and because of such complete removal there is nothing left in the pipe to become washed away by water traversing the pipe or torn therefrom by the drawing of electric conductors through it, and, therefore, all danger of fragments of paper being accumulated in bends, el- 105 bows, valves or other constricted portions of the conduit is avoided. The absorptive ac- 110 tion of the bibulous paper upon the cement immediately in contact with it resulting in the quick setting of the cement, as before described, I believe new of itself, and is of importance in that it rapidly ensures a hard inner layer of cement immediately around

the bore, which will support the rest of the mass even if it be quite soft; so that it is not necessary to leave the core in place until the whole wall of the pipe has hardened before proceeding to make another section of the pipe in prolongation of the one already made.

I claim:

1. A tubular molding core for cement pipes formed of bibulous material having overlapping edges united by a paste soluble in water.

2. A tubular molding core, as in claim 1,

the said bibulous material being a spirally wound strip.

3. A tubular molding core for cement pipes formed of a plurality of strips of bibulous material spirally wound in successive layers, and each strip having overlapping edges united by a paste soluble in water.

In testimony whereof I have affixed my signature in presence of two witnesses.

THOMAS E. MURRAY.

Witnesses:

GERTRUDE T. PORTER,
MAY T. McGARRY.